HIV-1 reverse transcriptase-pseudoknot RNA aptamer interaction has a binding affinity in the low picomolar range coupled with high specificity.

نویسندگان

  • O Kensch
  • B A Connolly
  • H J Steinhoff
  • A McGregor
  • R S Goody
  • T Restle
چکیده

Systematic evolution of ligands by exponential enrichment (SELEX) is a powerful method for the identification of small oligonucleotides that bind with high affinity and specificity to target proteins. Such DNAs/RNAs are a new class of potential chemotherapeutics that could block the enzymatic activity of pathologically relevant proteins. We have conducted a detailed biochemical study of the interaction of human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT) with a SELEX-derived pseudoknot RNA aptamer. Electron paramagnetic resonance spectroscopy of site-directed spin-labeled RT mutants revealed that this aptamer was selected for binding to the "closed" conformation of the enzyme. Kinetic analysis showed that the RNA inhibitor bound to HIV RT in a two-step process, with association rates similar to those described for model DNA/DNA and DNA/RNA substrates. However, the dissociation of the pseudoknot RNA from RT was dramatically slower than observed for model substrates. Equilibrium binding studies revealed an extraordinarily low K(d), of about 25 pm, for the enzyme-aptamer interaction, presumably a consequence of the slow off-rates. Additionally, this pseudoknot aptamer is highly specific for HIV-1 RT, with the closely related HIV-2 enzyme showing a binding affinity close to 4 orders of magnitude lower.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNA–protein interactions govern antiviral specificity and encapsidation of broad spectrum anti-HIV reverse transcriptase aptamers

RNA aptamers that bind HIV-1 reverse transcriptase (RT) inhibit HIV-1 replication, but little is known about potential aptamer-specific viral resistance. During replication, RT interacts with diverse nucleic acids. Thus, the genetic threshold for eliciting resistance may be high for aptamers that make numerous contacts with RT. To evaluate the impact of RT-aptamer binding specificity on replica...

متن کامل

Selection of 2′-deoxy-2′-fluoroarabinonucleotide (FANA) aptamers that bind HIV-1 reverse transcriptase with picomolar affinity

Using a Systematic Evolution of Ligands by Exponential Enrichment (SELEX) protocol capable of selecting xeno-nucleic acid (XNA) aptamers, a 2'-deoxy-2'-fluoroarabinonucleotide (FANA) aptamer (referred to as FA1) to HIV-1 reverse transcriptase (HIV-1 RT) was selected. FA1 bound HIV-1 RT with KD,app values in the low pM range under different ionic conditions. Comparisons to published HIV-1 RT RNA...

متن کامل

Aptamers that recognize drug-resistant HIV-1 reverse transcriptase

Drug-resistant variants of HIV-1 reverse transcriptase (RT) are also known to be resistant to anti-RT RNA aptamers. In order to be able to develop diagnostics and therapies that can focus on otherwise drug-resistant viruses, we have isolated two aptamers against a well-known, drug-resistant HIV-1 RT, Mutant 3 (M3) from the multidrug-resistant HIV-1 RT panel. One aptamer, M302, bound M3 but show...

متن کامل

Potent Inhibition of HIV-1 Reverse Transcriptase and Replication by Nonpseudoknot, “UCAA-motif” RNA Aptamers

RNA aptamers that bind the reverse transcriptase (RT) of human immunodeficiency virus (HIV) compete with nucleic acid primer/template for access to RT, inhibit RT enzymatic activity in vitro, and suppress viral replication when expressed in human cells. Numerous pseudoknot aptamers have been identified by sequence analysis, but relatively few have been confirmed experimentally. In this work, a ...

متن کامل

Differential susceptibility of HIV-1 reverse transcriptase to inhibition by RNA aptamers in enzymatic reactions monitoring specific steps during genome replication.

Nucleic acid aptamers to HIV-1 reverse transcriptase (RT) are potent inhibitors of DNA polymerase function in vitro, and they have been shown to inhibit viral replication when expressed in cultured T-lymphoid lines. We monitored RT inhibition by five RNA pseudoknot RNA aptamers in a series of biochemical assays designed to mimic discrete steps of viral reverse transcription. Our results demonst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 24  شماره 

صفحات  -

تاریخ انتشار 2000